

Quarter 1 Curriculum Guide

Mathematical Practices	
1. Make Sense of Problems and Persevere in Solving them	
2. Reasoning Abstractly & Quantitatively	
3. Construct Viable Arguments and Critique the Reasoning of Others	
4. Model with Mathematics	
5. Use Appropriate Tools Strategically	
6. Attend to Precision	
7. Look for and Make use of Structure	

8. Look for and Express Regularity in Repeated Reasoning

Critical Areas of Focus Being Addressed:

• Polynomial, Radical and Rational Relationships

There will be a review of Linear Relations and Functions and also solving Systems of Equations.	
N.CN.1 Know there is a complex number i such that i ² = -1, and every complex number has the form a + bi with a and b real numbers. [DOK 1]	DOK 1: Define i as $\sqrt{-1}$ or i 2 = -1. Define complex numbers. Write complex numbers in the form a + bi with a and b being real numbers.
N.CN.2 Use the relation $i^2 = -1$ and the commutative,	DOK 1:

associative, and distributive properties to add, subtract, and multiply complex numbers. [DOK 1]	Know that the commutative, associative, and distributive properties extend to the set of complex numbers over the operations of addition and multiplication.
	Use the relation i 2 = -1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
N.CN.7 Solve quadratic equations with real coefficients that have complex solutions. [DOK 1]	DOK 1: Solve quadratic equations with real coefficients that have complex solutions.
	Note from Appendix A: Limit to polynomials with real coefficient
A.SSE.1a Interpret expressions that represent a quantity in terms of its context.*(*Modeling standard) a. Interpret parts of an expression, such as terms, factors, and coefficients [DOK 2]	DOK 1: For expressions that represent a contextual quantity, define and recognize parts of an expression, such as terms, factors, and coefficients.
	Note from Appendix A: extend to polynomial & rational expressions
	DOK 2: For expressions that represent a contextual quantity, interpret parts of an expression, such as terms, factors, and coefficients in terms of the context. Note from Appendix A: extend to polynomial & rational expressions
A.SSE.1b Interpret expressions that represent a quantity in terms of its context.*(Modeling standard) b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret as the product of P and a factor not depending on P(1+r) ⁿ [DOK 2]	DOK 1: The underpinning knowledge for this standard is addressed in A.SSE.1a: For expressions that represent a contextual quantity, define and recognize parts of an expression, such as terms, factors, and coefficients. Note from Appendix A: extend to polynomial and rational expressions

	DOK 2:
	For expressions that represent a contextual quantity, interpret
	complicated expressions, in terms of the context, by viewing
	one or more of their parts as a single entity.
	Note from Appendix A: extend to polynomial and rational
	expressions
A.SSE.2 Use the structure of an expression to identify ways to	DOK 1:
rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus	Identify ways to rewrite expressions, such as difference of
recognizing it as a difference of squares that can be factored	squares, factoring out a common monomial, regrouping, etc.
as $(x^2 - y^2)(x^2 + y^2)$. [DOK 2]	
	Identify various structures of expressions (e.g. an exponential
	monomial multiplied by a scalar of the same base, difference of
	squares in terms other than just x)
	Note from Appendix A: Extend to polynomial and rational
	expressions.
	DOK 2:
	Use the structure of an expression to identify ways to rewrite
	it.
	Classify expressions by structure and develop strategies to
	assist in classification (e.g. use of conjugates in rewriting
	rational expressions, usefulness of Pythagorean triples, etc.).
	Note from Appendix A: Extend to polynomial and rational
	expressions.
A.APR.1 Understand that polynomials form a system	DOK 1:
analogous to the integers, namely, they are closed under the	Identify that the sum, difference, or product of two
operations of addition, subtraction, and multiplication; add,	polynomials will always be a polynomial, which means that
subtract, and multiply polynomials. [DOK 1]	polynomials are closed under the operations of addition,
	subtraction, and multiplication.
	Define "closure".
	Apply arithmetic operations of addition, subtraction, and
	multiplication to polynomials.
	Note from Appendix A: Algebra 2 should extend beyond the
	quadratic polynomials found in Algebra I.

A.APR. 2 Know and apply the Remainder Theorem: For a	DOK 1:
polynomial p(x) and a number a, the remainder on division	Define the remainder theorem for polynomial division and
by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$ is a factor of	divide polynomials.
p(x). [DOK 2]	
	DOK 2:
	Given a polynomial p(x) and a number a, divide p(x) by (x – a)
	to find p(a) then apply the remainder theorem and conclude
	that $p(x)$ is divisible by $x - a$ if and only if $p(a) = 0$.
A.APR.3 Identify zeros of polynomials when suitable	DOK 1:
factorizations are available, and use the zeros to construct a	When suitable factorizations are available, factor polynomials
rough graph of the function defined by the polynomial.	using any available methods.
[DOK1]	Create a sign chart for a polynomial f(x) using the polynomial's
	x-intercepts and testing the domain intervals for which f(x)
	greater than and less than zero.
	Use the x-intercepts of a polynomial function and the sign
	chart to construct a rough graph of the function.
A.APR.4 Prove polynomial identities and use them to describe	DOK 1:
numerical relationships. For example, the polynomial identity	Explain that an identity shows a relationship between two
$(x^{2} + y^{2})^{2} = (x^{2} - y^{2})^{2} + (2xy)^{2}$ can be used to generate	quantities, or expressions, that is true for all values of the
Pythagorean triples.	variables, over a specified set.
	DOK 2:
	Prove polynomial identities.
	Use polynomial identities to describe numerical relationships.
A.APR.6 Rewrite simple rational expressions in different	DOK 1:
forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where	Use inspection to rewrite simple rational expressions in
a(x), $b(x)$, $q(x)$, and $r(x)$ are polynomials with the degree of	different forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$,
r(x) less than the degree of $b(x)$, using inspection, long	where a(x), b(x), q(x), and r(x) are polynomials with the
division, or, for the more complicated examples, a computer	degree of r(x) less than the degree of b(x).
algebra system. [DOK 1]	Use long division to rewrite simple rational expressions in
	different forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$,
	where $a(x)$, $b(x)$, $q(x)$, and $r(x)$ are polynomials with the
	degree of $r(x)$ less than the degree of $b(x)$.
	Use a computer algebra system to rewrite complicated
	rational expressions in different forms; write a(x)/b(x) in the
	form $q(x) + r(x)/b(x)$, where $a(x)$, $b(x)$, $q(x)$, and $r(x)$ are

	polynomials with the degree of $r(x)$ less than the degree of $b(x)$.
A.REI.2 Solve simple rational and radical equations in one	DOK 1:
variable, and give examples showing how extraneous	Determine the domain of a rational function.
solutions may arise. [DOK 2]	Determine the domain of a radical function.
	Solve radical equations in one variable.
	Solve rational equations in one variable.
	DOK 2:
	Give examples showing how extraneous solutions may arise when solving rational and radical equations
A REI 11 Explain why the x-coordinates of the points where	DOK 1.
the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations.	Recognize and use function notation to represent linear, polynomial, rational, absolute value, exponential, and radical equations. DOK 2: Explain why the x-coordinates of the points where the graph
rational, absolute value, exponential, and logarithmic functions.*(*Modeling standard) [DOK 2]	of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equations $f(x)=g(x)$.
	Approximate/find the solution(s) using an appropriate
	method for example, using technology to graph the functions, make tables of values or find successive approximations
	Noto from Appondix A: Include combinations of linear
	note if on Appendix A. include combinations of intear,
	functions.
F.IF.5 Relate the domain of a function to its graph and, where	DOK 1:
applicable, to the quantitative relationship it describes. For	Given the graph or a verbal/written description of a function,
example, if the function h(n) gives the number of person-	identify and describe the domain of the function.
hours it takes to assemble n engines in a factory, then the	Identify an appropriate domain based on the unit, quantity,
positive integers would be an appropriate domain for the	and type of function it describes.
function [DOK 2]	Notes from Appendix A: Emphasize the selection of a model
	function based on behavior of data and context.
F.IF.6 Calculate and interpret the average rate of change of a	DOK 1:
function (presented symbolically or as a table) over a	Recognize slope as an average rate of change.

specified interval. Estimate the rate of change from a graph.*(Modeling standard) [DOK 2]	Calculate the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Note from the Appendix A: Emphasize the selection of a model
	DOK 2: Interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval.
F.IF.7c Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*(Modeling standard) c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. [DOK 2]	DOK 1: Graph exponential, logarithmic, and trigonometric functions, by hand in simple cases or using technology for more complicated cases, and show intercepts and end behavior for exponential and logarithmic functions, and for trigonometric functions, show period, midline, and amplitude. Note from the Appendix A: Focus on applications and how key features relate to characteristics of a situation, making selection of a particular type of function model appropriate.
	DOK 2: Analyze the difference between simple and complicated linear, quadratic, square root, cube root, piecewise-defined, exponential, logarithmic, and trigonometric functions, including step functions and absolute value functions and know when the use of technology is appropriate. Compare and contrast the domain and range of exponential, logarithmic, and trigonometric functions with linear, quadratic, absolute value, step and piece-wise defined functions. Select the appropriate type of function, taking into consideration the key features, domain, and range, to model a real-world situation.
F.IF.8b Write a function defined by an expression in different	DOK 1:
but equivalent forms to reveal and explain different properties of the function: b. Use the properties of exponents	Identify how key features of an exponential function relate to characteristics of in a real-world context.

to interpret expressions for exponential functions. For	DOK 2:
example: identify percent rate of change in functions such as	Given the expression of an exponential function, use the
$y = (1.02)^t$, $y = (.97)^t$, $y = (1.01)^{12t}$, $y = (1.2)^{t/10}$, and classify them	properties of exponents to interpret the expression in terms of
as representing exponential growth or decay. [DOK 2]	a real-world context.
	Write an exponential function defined by an expression in
	different but equivalent forms to reveal and explain different
	properties of the function, and determine which form of the
	function is the most appropriate for interpretation for a real-
	world context.
	Note from Appendix A: Focus on applications and how key
	features relate to characteristics of a situation, making
	selection of a particular type of function model appropriate.
F.IF.9 Compare properties of two functions each represented	DOK 1:
in a different way (algebraically, graphically, numerically in	Identify types of functions based on verbal , numerical,
tables, or by verbal descriptions). For example, given a graph	algebraic, and graphical descriptions and state key properties
of one quadratic function and an algebraic expression for	(e.g. intercepts, maxima, minima, growth rates, average rates
another, say which has the larger maximum. [DOK 2]	of change, and end behaviors)
	Differentiate between different types of functions using a
	variety of descriptors (graphically, verbally, numerically, and algebraically)
	Note from Appendix A: Focus on applications and how key
	features relate to characteristics of a situation, making
	selection of a particular type of function model appropriate.
	DOK 2:
	Use a variety of function representations (algebraically,
	graphically, numerically in tables, or by verbal descriptions) to
	compare and contrast properties of two functions
F.BF. 4a Find the inverse functions a. Solve an equation of the	DOK 1:
form $f(x) = c$ for a simple function f that has an inverse and	Define inverse function.
write an expression for the inverse. For example: $f(x) = 2x^3$ or	Solve an equation of the form $f(x) = c$ for a simple function f
$f(x) = (x+1)/(x-1)$ for $x \neq 1$. [DOK 1]	that has an inverse and write an expression for the inverse.
	Note from Appendix A: Extend the set of functions to simple
	rational, simple radical and simple exponential functions;
	connect F.BF.4a to F.LE.4.